Ordering Trees with Perfect Matchings by Their Wiener Indices
نویسندگان
چکیده
The Wiener index of a connected graph is the sum of all pairwise distances of vertices of the graph. In this paper, we consider the Wiener indices of trees with perfect matchings, characterizing the eight trees with smallest Wiener indices among all trees of order 2 ( 11) m m with perfect matchings.
منابع مشابه
Ordering the Complements of Trees by the Number of Maximum Matchings
A “perfect matching” of a graph G with n vertices is a set of n/2 independent edges of G. In the present study, we succeeded in determining the trees whose complements have the extremal number of “perfect matchings” for two different group of trees. Some further problems are also posed. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem 105: 131–141, 2005
متن کاملPerfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملOrdering the Non-starlike Trees with Large Reverse Wiener Indices
The reverse Wiener index of a connected graph G is defined as Λ(G) = 1 2 n(n− 1)d−W (G), where n is the number of vertices, d is the diameter, and W (G) is the Wiener index (the sum of distances between all unordered pairs of vertices) of G. We determine the n-vertex non-starlike trees with the first four largest reverse Wiener indices for n > 8, and the nvertex non-starlike non-caterpillar tre...
متن کاملOn the edge reverse Wiener indices of TUC4C8(S) nanotubes
The edge versions of reverse Wiener indices were introduced by Mahmiani et al. very recently. In this paper, we find their relation with ordinary (vertex) Wiener index in some graphs. Also, we compute them for trees and TUC4C8(s) naotubes.
متن کاملWiener Indices of Balanced Binary Trees
Molecules and molecular compounds are often modeled by molecular graphs. One of the most widely known topological descriptor [6, 9] is the Wiener index named after chemist Harold Wiener [13]. The Wiener index of a graph G(V, E) is defined as W (G) = ∑ u,v∈V d(u, v), where d(u, v) is the distance between vertices u and v (minimum number of edges between u and v). A majority of the chemical appli...
متن کامل